KVS BHOPAL REGION CBT TEST AUG 2023 SUBJECT-MATHEMATICS CLASS-12

TOPICS: DETERMINANTS CONTINUITY AND DIFFERENTIABILITY APPLICATIONS OF DERIVATIVES

Case Study – 1

A function f(x) is said to be continuous in an open interval (a ,b) , if it is continuous at every point in the interval.

A function f(x) is said to be continuous in an closed interval [a,b], if f(x) is continuous

in (a, b) and
$$\lim_{h \to 0} f(a+h) = f(a)$$
 and $\lim_{h \to 0} f(b-h) = f(b)$.
If a function $f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} &, \text{ if } x < 0\\ c &, \text{ if } x = 0\\ \frac{\sqrt{x+bx^2} - \sqrt{x}}{bx^{3/2}} &, \text{ if } x > 0 \end{cases}$ is continuous at $x = 0$,

then answer the following questions.

1.	The value of a is :							
	(a) -3/2	(b) 3/2	(c) 0		(d) -1/2			
2.	The value of b is :							
	(a) 1	(b) -1	(c) 0		(d) Any real number except 0			
3.	The value of c is :							
	(a) 1	(b) 1/2		(c) -1	(d) -1/2			
4.	The value of ($a^2 + c^2$) is :							
	(a) 1/5	(b) 5/2		(c) 2/5	(d) None of these			

Feedback

$$\begin{aligned} c_{ax-study} - J \\ f(x) = \int \frac{\sin(a+1)x + \sin x}{x} \quad x < o \\ c \\ c \\ c \\ \frac{1}{2} = o \\ \frac{1}{2} = o$$

Case Study 2

An architect designs a garden in a society. The garden is in the shape of a rectangle inscribed in a circle of radius 10m as shown in given figure.

Based on the above information, answer the following: (Q.5 to Q.8)

Q5. 2x and 2y represents the length and breadth of the rectangular part, then the relation between the variables is

(a) $x^2 - y^2 = 10$ (b) $x^2 + y^2 = 10$ (c) $x^2 - y^2 = 100$ (d) $x^2 + y^2 = 100$

Q6. The area of the green grass A expressed as a function of x is

(a)
$$2x \sqrt{100 - x^2}$$
 (b) $4x \sqrt{100 - x^2}$ (c) $2x \sqrt{100 + x^2}$ (d) $4x \sqrt{100 + x^2}$

Q7. The value of length of rectangle, if A is maximum, is

(a) 10 v2 m (b) 20v2 m (c) 20 m (d) 5 v2 m

Q8. The area of gravelling path is

(a) $100(\pi + 2)m^2$ (b) $100(\pi - 2)m^2$ (c) $200(\pi + 2)m^2$ (d) $200(\pi - 2)m^2$

Feedback

$$\begin{array}{c}
 (ake - study - 2) \\
 glven \\
 Be = 2x \\
 Bc = 2y \\
 (b) Relation b/w Variables.
 x2 + y2 = 100 (d) \\
 (d) \\
 (f) Relation b/w Variables.
 x2 + y2 = 100 (d)
 (d)
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of genden. A: $2x_{1} x_{2} y_{2} \\
 (f) Assess of fill Assess of fill$$$$$$$$$$$$$$$$$$$$$$$$$$

Q9. In the following questions, A statement of Assertion (A) is followed by a statement of Reason

(R). Mark the correct choice as.

Assertion (A): The function $y = [x(x - 2)]^2$ is increasing in (0, 1) U (2, ∞)

Reason (R): dy/dx = 0, when x = 0, 1, 2

(a) Both A and R are true and R is the correct explanation of A

(b)Both A and R are true but R is NOT the correct explanation of A

(c) A is true but R is false

<u>Feedback</u>

(9)
$$\begin{split} \forall &= [x(x-2)]^{2} \\ \forall &= (x^{2}-2x)^{2} \\ \forall &= (x^{2}-2x)^{2} \\ \forall &= x^{4}+4x^{2}-4x^{3} \\ \exists &= x^{4}+4x^{2}-4x^{3} \\ dx &= 4x^{3}+8x-12x^{2} \\ \frac{dy}{dx} &= 4x(x^{2}+x-3x) \\ &= 2x(x^{2}+x-3x) \\ &= 4x(x^{2}+x-3x) \\ &=$$

Q10 Assertion (A) For two matrices A and B of order 3, |A|=2|B| = -3 then |2AB| is -48. Reason(R) For a square matrix A, A (adj A) = (adj A) A= |A||

- A Both A and R are true and R is the correct explanation of A
- **B** Both A and R are true but R is NOT the correct explanation of A.
- **C** A is true but R is false
- **D** A is false but R is true
- E Both A and R are false

Feedback
(adj A) =
$$\begin{bmatrix} J_{3F3} & B = \begin{bmatrix} J_{3F3} \\ A = L \end{bmatrix}_{3F3}$$

 $A (adj A) = (dj A) = |B| J$
 $A (adj A) = (dj A) = |B| J$
 $A (adj A) = (dj A) = |B| J$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $B = -3$
 $A (adj A) = (dj A) = |B| J$
 $A (adj A) = (dj A) = (dj A) = |B| J$
 $A (adj A) = (dj A)$
 $A = |B| J$
 $A (adj A) = (dj A) =$

Answer Key

Case Study 1	а	d	b	b
Case Study 2	d	b	а	В
Q9. A	Q10. B			